Scalable Non-linear Learning with Adaptive Polynomial Expansions
نویسندگان
چکیده
Can we effectively learn a nonlinear representation in time comparable to linear learning? We describe a new algorithm that explicitly and adaptively expands higher-order interaction features over base linear representations. The algorithm is designed for extreme computational efficiency, and an extensive experimental study shows that its computation/prediction tradeoff ability compares very favorably against strong baselines.
منابع مشابه
Analytic Regularity and GPC Approximation for Control Problems Constrained by Linear Parametric Elliptic and Parabolic PDEs
This paper deals with linear-quadratic optimal control problems constrained by a parametric or stochastic elliptic or parabolic PDE. We address the (difficult) case that the number of parameters may be countable infinite, i.e., σj with j ∈ N, and that the PDE operator may depend non-affinely on the parameters. We consider tracking-type functionals and distributed as well as boundary controls. B...
متن کاملAdaptive sparse polynomial chaos expansion based on least angle regression
Polynomial chaos (PC) expansions are used in stochastic finite element analysis to represent the random model response by a set of coefficients in a suitable (so-called polynomial chaos) basis. The number of terms to be computed grows dramatically with the size of the input random vector, which makes the computational cost of classical solution schemes (may it be intrusive (i.e. of Galerkin typ...
متن کاملAdaptive Basis Function Construction: An Approach for Adaptive Building of Sparse Polynomial Regression Models 127 Adaptive Basis Function Construction: An Approach for Adaptive Building of Sparse Polynomial Regression Models
The task of learning useful models from available data is common in virtually all fields of science, engineering, and finance. The goal of the learning task is to estimate unknown (input, output) dependency (or model) from training data (consisting of a finite number of samples) with good prediction (generalization) capabilities for future (test) data (Cherkassky & Mulier, 2007; Hastie et al., ...
متن کاملLarge-scale log-determinant computation through stochastic Chebyshev expansions
Logarithms of determinants of large positive definite matrices appear ubiquitously in machine learning applications including Gaussian graphical and Gaussian process models, partition functions of discrete graphical models, minimum-volume ellipsoids, metric learning and kernel learning. Log-determinant computation involves the Cholesky decomposition at the cost cubic in the number of variables,...
متن کاملAdaptive Sparse Grid Approaches to Polynomial Chaos Expansions for Uncertainty Quantification
Adaptive Sparse Grid Approaches to Polynomial Chaos Expansions for Uncertainty Quantification by Justin Gregory Winokur Department of Mechanical Engineering & Materials Science Duke University Date: Approved: Omar M. Knio, Supervisor
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014